
 Introduction to MPI I/O

William Gropp www.cs.illinois.edu/~wgropp

http://www.cs.illinois.edu/~wgropp

Сheckpoints

2

static void save_checkpoint()
{
 if (rank == 0) {
 FILE* file = fopen("gauss.txt",
"w");
 for(int i = 0; i < N; i++) {
 for (int j = 0; j <= N; j++) {
 fprintf(file, "%f", A(i, j));
 }
 }
 fclose(file);
 }
}

static void load_checkpoint()
{
 FILE* file = fopen("gauss.txt",
"r");
 for(int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 fscanf(file, "%f", &A(i, j));
 }
 }
 fclose(file);
 printf("Proc %d loaded
 checkpoint\n", rank);
}

float *A;
#define A(i,j) A[(i)*(N+1)+(j)]

Parallel I/O in MPI

3

 Why do I/O in MPI?

 Why not just POSIX?

 Parallel performance

 Single file (instead of one file / process)

 MPI has replacement functions for POSIX

I/O

 Provides migration path

 Multiple styles of I/O can all be expressed

in MPI

 Including some that cannot be expressed

without MPI

Non-Parallel I/O

 Non-parallel

 Performance worse than sequential

 Legacy from before application was parallelized

 Either MPI or not

4

Independent Parallel I/O

 Each process writes to a separate file

 Pro: parallelism

 Con: lots of small files to manage

 Legacy from before MPI

 MPI or not
5

Cooperative Parallel I/O

 Parallelism

 Can only be expressed in MPI

 Natural once you get used to it
6

Why MPI is a Good
Setting for Parallel I/O

7

 Writing is like sending and reading is
like receiving.

 Any parallel I/O system will need:

 collective operations

 user-defined datatypes to describe both
memory and file layout

 communicators to separate application-level
message passing from I/O-related message
passing

 non-blocking operations

 I.e., lots of MPI-like machinery

What does Parallel I/O Mean?

8

 At the program level:

Concurrent reads or writes from
multiple processes to a common file

 At the system level:

A parallel file system and hardware
that support such concurrent access

The Four Levels of Access

30

F
il

e
S

p
ac

e

Processes 3 2 1 0

Level 0

Level 1

Level 2

Level 3

9

Independent I/O
with MPI-IO

10

The Basics: An Example

11

 Just like POSIX I/O, you need to

Open the file

Read or Write data to the file

Close the file

 In MPI, these steps are almost the
same:

Open the file: MPI_File_open

Write to the file: MPI_File_write

Close the file: MPI_File_close

A Complete Example

12

#include <stdio.h> #include "mpi.h”

int main(int argc, char *argv[])

{

MPI_File fh;

int buf[1000], rank; MPI_Init(0,0);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_File_open(MPI_COMM_WORLD, "test.out",

MPI_MODE_CREATE|MPI_MODE_WRONLY,

MPI_INFO_NULL, &fh);

if (rank == 0)

MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

MPI_File_close(&fh); MPI_Finalize();

return 0;

}

Comments on Example

13

 File Open is collective over the communicator

 Will be used to support collective I/O, which we will
see is important for performance

 Modes similar to Unix open

 MPI_Info provides additional hints for performance

 File Write is independent (hence the test on
rank)

 Many important variations covered in later slides

 File close is collective; similar in style to
MPI_Comm_free

14

Passing Hints

15

Example of Hints Display

16

Examples of Hints (used in ROMIO)

17

Passing Hints

Writing to a File

18

 Use MPI_File_write or
MPI_File_write_at

 Use MPI_MODE_WRONLY or MPI_MODE_RDWR

as the flags to MPI_File_open

 If the file doesn’t exist previously, the flag
MPI_MODE_CREATE must also be passed to
MPI_File_open

 We can pass multiple flags by using
bitwise-or ‘|’ in C, or addition ‘+” in
Fortran

Ways to Access a Shared File

• MPI_File_seek

• MPI_File_read

• MPI_File_write

• MPI_File_read_at

• MPI_File_write_at

• MPI_File_read_shared

• MPI_File_write_shared

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O

19

13

Using Explicit Offsets

20

13

#include “mpi.h”

MPI_Status status;

MPI_File fh;

MPI_Offset offset;

MPI_File_open(MPI_COMM_WORLD, “/pfs/datafile”,

MPI_MODE_RDONLY, MPI_INFO_NULL, &fh)

nints = FILESIZE / (nprocs*INTSIZE);

 offset = rank * nints * INTSIZE;

MPI_File_read_at(fh, offset, buf, nints, MPI_INT,

&status);

MPI_Get_count(&status, MPI_INT, &count);

printf(“process %d read %d

ints\n”, rank, count);

MPI_File_close(&fh);

Why Use Independent I/O?

21

 Sometimes the synchronization of
collective calls is not natural

 Sometimes the overhead of
collective calls outweighs their
benefits

Example: very small I/O during

header reads

Noncontiguous I/O in File

22

 Each process describes the part of the
file for which it is responsible

 This is the “file view”

 Described in MPI with an offset (useful for
headers) and an MPI_Datatype

 Only the part of the file described by the
file view is visible to the process; reads
and writes access these locations

 This provides an efficient way to perform

noncontiguous accesses

16

Noncontiguous Accesses

23

 Common in parallel applications

 Example: distributed arrays stored in files

 A big advantage of MPI I/O over Unix I/O is
the ability to specify noncontiguous accesses
in memory and file within a single function call
by using derived datatypes

 POSIX only supports non-contiguous in file, and only
with IOVs

 Allows implementation to optimize the access

 Collective I/O combined with noncontiguous
accesses yields the highest performance

File Views

24

22

 Specified by a triplet (displacement,
etype, and filetype) passed to
MPI_File_set_view

• displacement = number of bytes to be

skipped from the start of the file

 e.g., to skip a file header

• etype = basic unit of data access (can be
any basic or derived datatype)

• filetype = specifies which portion of the
file is visible to the process

A Simple Noncontiguous
File View Example

etype = MPI_INT

filetype = two MPI_INTs followed by

a gap of four MPI_INTs

displacement filetype filetype and so on...

FILE
head of file

25

22

Noncontiguous File View Code

26

22

MPI_Aint lb, extent;

MPI_Datatype etype, filetype, contig;

 MPI_Offset disp;

MPI_Type_contiguous(2, MPI_INT, &contig);

lb = 0;

extent = 6 * sizeof(int);

MPI_Type_create_resized(contig, lb, extent, &filetype);

MPI_Type_commit(&filetype);

disp = 5 * sizeof(int);

etype = MPI_INT;

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",

MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, filetype, "native",

MPI_INFO_NULL);

MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

 A critical optimization in parallel I/O
 All processes (in the communicator) must call the

collective I/O function
 Allows communication of “big picture” to file system

 Framework for I/O optimizations at the MPI-IO layer

 Basic idea: build large blocks, so that reads/writes in I/O
system will be large
 Requests from different processes may be merged together
 Particularly effective when the accesses of different

processes are noncontiguous and interleaved
Small individual requests

Large collective access

Collective I/O and MPI

27

22

Collective I/O Functions

28

22

• MPI_File_write_at_all, etc.

 _all indicates that all processes in the group

specified by the communicator passed to
MPI_File_open will call this function

 _at indicates that the position in the file is

specified as part of the call; this provides
thread-safety and clearer code than using a
separate “seek” call

• Each process specifies only its own
access information — the argument list
is the same as for the non-collective
functions

The Other Collective I/O Calls

• MPI_File_seek

• MPI_File_read_all

• MPI_File_write_all

• MPI_File_read_at_all

• MPI_File_write_at_all

• MPI_File_read_ordered

• MPI_File_write_ordered

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O

29

22

Using the Right
MPI-IO Function

30

22

 Any application as a particular “I/O access
pattern” based on its I/O needs

 The same access pattern can be presented to
the I/O system in different ways depending on
what I/O functions are used and how

 We classify the different ways of expressing I/
O access patterns in MPI-IO into four levels:
level 0 – level 3

 We demonstrate how the user’s choice of level
affects performance

Example: Distributed Array
 Access

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P0 P1 P2 P3 P0 P1 P2

P4 P5 P6 P7 P4 P5 P6

P8 P9 P10 P11 P8 P9 P10

P12 P13 P14 P15 P12 P13 P14

31

22

Large array
distributed
among 16
processes

Access Pattern in the file

Each square represents
a subarray in the memory

of a single process

Level-0 Access

32

22

 Each process makes one independent read
request for each row in the local array (as in
Unix)

MPI_File_open(..., file, ..., &fh);

for (i=0; i<n_local_rows; i++) {

MPI_File_seek(fh, ...);

MPI_File_read(fh, &(A[i][0]), ...);

}

MPI_File_close(&fh);

Level-1 Access

33

22

 Similar to level 0, but each process uses collective
I/O functions

MPI_File_open(MPI_COMM_WORLD, file, ...,

&fh);

for (i=0; i<n_local_rows; i++) {

MPI_File_seek(fh, ...);

MPI_File_read_all(fh, &(A[i][0]), ...);

 }

 MPI_File_close(&fh);

Level-2 Access

34

22

 Each process creates a derived datatype to
describe the noncontiguous access pattern, defines
a file view, and calls independent I/O functions

MPI_Type_create_subarray(...,

&subarray, ...);

MPI_Type_commit(&subarray);

MPI_File_open(..., file, ..., &fh);

MPI_File_set_view(fh, ..., subarray, ...);

MPI_File_read(fh, A, ...);

MPI_File_close(&fh);

Level-3 Access

35

22

 Similar to level 2, except that each process uses
collective I/O functions

MPI_Type_create_subarray(...,
&subarray,

MPI_Type_commit(&subarray);

...);

MPI_File_open(MPI_COMM_WORLD, file,...,
&fh);

MPI_File_set_view(fh

,
...,

subarray,
...)

;

MPI_File_read_all(fh

,

MPI_File_close(&fh);

A, ...);

The Four Levels of Access

30

F
il

e
S

p
ac

e

Processes 3 2 1 0

Level 0

Level 1

Level 2

Level 3

36

Collective I/O
Can Provide Far Higher Performance

• Write performance for
a 3D array output in
canonical order on 2
supercomputers,
using 256 processes
(1 process / core)

• Level 0 (independent
I/O from each
process for each
contiguous block of
memory) too slow on
BG/Q

• Total BW is still low
because relatively
few nodes in use (16
for Blue Waters =

~180MB/sec/node)

0

500

1000

1500

2000

2500

3000

3500

Blue Gene/Q Blue Waters

B
a

n
d

w
id

th
 (
M

B
/s

)

Level 0
Level 2
Level 3

37

Summary

38

 Key issues that I/O must address

 High latency of devices

 Nonblocking I/O; cooperative I/O

 I/O inefficient if transfers are not both large
and aligned with device blocks

 Collective I/O; datatypes and file views

 Data consistency to other users

 POSIX is far too strong (primary reason parallel
file systems have reliability problems)

 “Big Data” file systems are weak (eventual
consistency; tolerate differences)

 MPI is precise and provides high performance;
consistency points guided by users

