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One-Sided Communication

 The basic idea of one-sided communication models is to  
decouple data movement with process synchronization
 Should be able to move data without requiring that the remote 

 process synchronize
 Each process exposes a part of its memory to other processes
 Other processes can directly read from or write to this memory

 

Region

 

Region

 

Region

 

Region

Global  
Address 
 Space

    

3



Comparing One-sided and 
 Two-sided Programming
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Advantages of RMA  
Operations
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 Can do multiple data transfers with a single  
synchronization operation
 like BSP model

 Bypass tag matching
 effectively precomputed as part of remote offset

 Some irregular communication patterns can be 
 more economically expressed

 Can be significantly faster than send/receive  
on systems with hardware support for remote  
memory access, such as shared memory  
systems



Irregular Communication
 Patterns with RMA
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 If communication pattern is not known a  
priori, but the data locations are known,  
the send-receive model requires an extra 
 step to determine how many sends-  
receives to issue

 RMA, however, can handle it easily  
because only the origin or target process 
 needs to issue the put or get call

 This makes dynamic communication  
easier to code in RMA



What we need to know 
in  MPI RMA
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 How to create remote accessible 
 memory?

 Reading, Writing and Updating  
remote memory

 Data Synchronization
 Memory Model



Creating Public Memory
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 Any memory created by a process is, by default,  
only locally accessible
 X = malloc(100);

 Once the memory is created, the user has to make 
 an explicit MPI call to declare a memory region as 
 remotely accessible
 MPI terminology for remotely accessible memory is a  

“window”
 A group of processes collectively create a “window object”

 Once a memory region is declared as remotely  
accessible, all processes in the window object can  
read/write data to this memory without explicitly  
synchronizing with the target process



Remote Memory Access
 Windows and Window Objects
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Basic RMA Functions for  
Communication
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• MPI_Win_create exposes local memory to RMA 
operation  by other processes in a communicator
 Collective operation
 Creates window object

• MPI_Win_free deallocates window object

• MPI_Put moves data from local memory to remote  
memory

• MPI_Get retrieves data from remote memory into local  
memory

• MPI_Accumulate updates remote memory using local  
values

• Data movement operations are non-blocking
• Subsequent synchronization on window object  

needed to ensure operation is complete
10



Window Creation
Models
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 Four models exist
 MPI_WIN_CREATE

 You already have an allocated buffer that you  
would like to make remotely accessible

 MPI_WIN_ALLOCATE
 You want to create a buffer and directly make it 

 remotely accessible

 MPI_WIN_CREATE_DYNAMIC
 You don’t have a buffer yet, but will have one in 

 the future

 MPI_WIN_ALLOCATE_SHARED
 You want multiple processes on the same node  

share a buffer



MPI_WIN_CREATE

 base
 size

- pointer to local data to expose
- size of local data in bytes (nonnegative integer)

 

 Only data exposed in a window can be accessed with RMA 
 ops.

 Arguments:

 disp_unit - local unit size for displacements, in bytes 
 (positive integer)

 info
 comm
 win

- info argument (handle)
- communicator (handle)
– window object12(handle)



int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */  
MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);
/* use private memory like you normally would */  a[0] = 
1; a[1] = 2;

/* collectively declare memory as remotely accessible */ 
 MPI_Win_create(a, 1000*sizeof(int), sizeof(int),

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);  MPI_Free_mem(a);  MPI_Finalize(); 
return 0;

}
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Example with 
MPI_WIN_CREATE



MPI_WIN_ALLOCATE

 info
 comm

- info argument (handle)
- communicator (handle)

 baseptr - pointer to exposed local data
 win – window object (ha1n4 dle)

 

 Create a remotely accessible memory region in an RMA 
 window
 Only data exposed in a window can be accessed with RMA ops.

 Arguments:
 size - size of local data in bytes (nonnegative integer)
 disp_unit- local unit size for displacements, in bytes (positive  

integer)



Example with  
MPI_WIN_ALLOCATE
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int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */  
MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);  MPI_Finalize(); return 0;
}



MPI_WIN_CREATE_DYNAMIC

 

 Only data exposed in a window can be accessed with RMA ops

 Initially “empty”
 Application can dynamically attach/detach memory to this  

window by calling MPI_Win_attach/detach
 Application can access data on this window only after a  

memory region has been attached

 Window origin is MPI_BOTTOM
 Displacements are segment addresses relative to  

MPI_BOTTOM
 Must tell others the displacement after calling attach
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Example with MPI_WIN_CREATE_DYNAMIC
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int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);  
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (int *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1; a[1] = 2;

/* locally declare memory as remotely accessible */  
MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */  
MPI_Win_detach(win, a); free(a);  MPI_Win_free(&win);

MPI_Finalize(); return 0;
}



Data movement
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 MPI provides ability to read, write 
 and atomically modify data in  
remotely accessible memory  
regions
MPI_GET
MPI_PUT
MPI_ACCUMULATE
MPI_GET_ACCUMULATE
MPI_COMPARE_AND_SWAP
MPI_FETCH_AND_OP



Data movement: Put
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Data movement: Get
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Remotely  
Accessible 
 Memory

Private  
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 Different data layouts  
between target/origin OK
 Basic type elements  

must match

 Op = MPI_REPLACE
 Implements f(a,b)=b

 Element-wise atomic PUT

 

 

 Reduces origin and target data into target buffer using op 
 argument as combiner

 Predefined ops only, no user-defined operations
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Atomic Data Aggregation: Get Accumulate

•
•
•

•
•
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Atomic Data Aggregation: CAS and FOP

 

 All buffers share a single predefined datatype
 No count argument (it’s always 1)
 Simpler interface allows hardware optimization

 CAS: Atomic swap if target value is equal to  
compare value
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Ordering of Operations in 
 MPI RMA
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 No guaranteed ordering for Put/Get operations
 Result of concurrent Puts to the same location  

undefined
 Result of Get concurrent Put/Accumulate undefined

 Can be garbage in both cases
 Result of concurrent accumulate operations to the  

same location are defined according to the order in  
which the occurred
 Atomic put: Accumulate with op = MPI_REPLACE
 Atomic get: Get_accumulate with op = MPI_NO_OP

 Accumulate operations from a given process are  
ordered by default
 User can tell the MPI implementation that ordering is not 

 required as optimization hint
 You can ask for only the needed orderings, e.g., RAW  

(read-after-write), WAR, RAR, or WAW



RMA Synchronization Models
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 RMA data access model
 When is a process allowed to read/write remotely accessible  

memory?
 When is data written by process X is available for process Y to read?
 RMA synchronization models define these semantics

 Three synchronization models provided by MPI:
 Fence (active target)
 Post-start-complete-wait (generalized active target)
 Lock/Unlock (passive target)

 Data accesses occur within “epochs”
 Access epochs: contain a set of operations issued by an origin  

process
 Exposure epochs: enable remote processes to access and/or update  

a target’s window
 Epochs define ordering and completion semantics
 Synchronization models provide mechanisms for establishing epochs

 E.g., starting, ending, and synchronizing epochs



 Starts and ends access and 
 exposure epochs on all  
processes in the window

 All processes in group of “win”  
do an MPI_WIN_FENCE to open 
 an epoch

 Everyone can issue PUT/GET  
operations to read/write data

 Everyone does an  
MPI_WIN_FENCE to close the
epoch

 All operations complete at the 
 second fence synchronization

Fence

Fence
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PSCW: Generalized Active 
 Target Synchronization

 Target: Exposure epoch
 Opened with MPI_Win_post
 Closed by MPI_Win_wait

 Origin: Access epoch
 Opened by MPI_Win_start
 Closed by MPI_Win_complete

 All synchronization operations may 
 block, to enforce P-S/C-W 
ordering
 Processes can be both origins and  

targets

Start

Complete

Post

Wait
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Using ActiveTarget  
Synchronization
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 Active target RMA works well for many BSP-  
style program
 Halo exchange
 Dense linear algebra

 How might you write the dense matrix-vector  
multiply using
 MPI_Get: Instead of Allgather
 MPI_Put: Instead of send/receive

 Do you think using Get instead of Allgather is  
a good choice at scale? Why or why not? How 
 would use use a performance model to argue  
your choice?


