
One-sided
Communication in MPI

William Gropp
www.cs.illinois.edu/~wgropp

Thanks to

2

 This material based on the SC
Tutorial presented by
Pavan Balaji
William Gropp
Torsten Hoefler
Rajeev Thakur

One-Sided Communication

 The basic idea of one-sided communication models is to
decouple data movement with process synchronization
 Should be able to move data without requiring that the remote

 process synchronize
 Each process exposes a part of its memory to other processes
 Other processes can directly read from or write to this memory

Region

Region

Region

Region

Global
Address
 Space

3

Comparing One-sided and
 Two-sided Programming

Process 0

SEND(data)

RECV(data)

Process 1

D E
L A
Y

Even the
 sending
 process

 is
delayed

Delay in
process 1
 does not
 affect

process 0

Advantages of RMA
Operations

5

 Can do multiple data transfers with a single
synchronization operation
 like BSP model

 Bypass tag matching
 effectively precomputed as part of remote offset

 Some irregular communication patterns can be
 more economically expressed

 Can be significantly faster than send/receive
on systems with hardware support for remote
memory access, such as shared memory
systems

Irregular Communication
 Patterns with RMA

6

 If communication pattern is not known a
priori, but the data locations are known,
the send-receive model requires an extra
 step to determine how many sends-
receives to issue

 RMA, however, can handle it easily
because only the origin or target process
 needs to issue the put or get call

 This makes dynamic communication
easier to code in RMA

What we need to know
in MPI RMA

7

 How to create remote accessible
 memory?

 Reading, Writing and Updating
remote memory

 Data Synchronization
 Memory Model

Creating Public Memory

8

 Any memory created by a process is, by default,
only locally accessible
 X = malloc(100);

 Once the memory is created, the user has to make
 an explicit MPI call to declare a memory region as
 remotely accessible
 MPI terminology for remotely accessible memory is a

“window”
 A group of processes collectively create a “window object”

 Once a memory region is declared as remotely
accessible, all processes in the window object can
read/write data to this memory without explicitly
synchronizing with the target process

Remote Memory Access
 Windows and Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

9

Basic RMA Functions for
Communication

10

• MPI_Win_create exposes local memory to RMA
operation by other processes in a communicator
 Collective operation
 Creates window object

• MPI_Win_free deallocates window object

• MPI_Put moves data from local memory to remote
memory

• MPI_Get retrieves data from remote memory into local
memory

• MPI_Accumulate updates remote memory using local
values

• Data movement operations are non-blocking
• Subsequent synchronization on window object

needed to ensure operation is complete
10

Window Creation
Models

11

 Four models exist
 MPI_WIN_CREATE

 You already have an allocated buffer that you
would like to make remotely accessible

 MPI_WIN_ALLOCATE
 You want to create a buffer and directly make it

 remotely accessible

 MPI_WIN_CREATE_DYNAMIC
 You don’t have a buffer yet, but will have one in

 the future

 MPI_WIN_ALLOCATE_SHARED
 You want multiple processes on the same node

share a buffer

MPI_WIN_CREATE

 base
 size

- pointer to local data to expose
- size of local data in bytes (nonnegative integer)

 Only data exposed in a window can be accessed with RMA
 ops.

 Arguments:

 disp_unit - local unit size for displacements, in bytes
 (positive integer)

 info
 comm
 win

- info argument (handle)
- communicator (handle)
– window object12(handle)

int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */
MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);
/* use private memory like you normally would */ a[0] =
1; a[1] = 2;

/* collectively declare memory as remotely accessible */
 MPI_Win_create(a, 1000*sizeof(int), sizeof(int),

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win); MPI_Free_mem(a); MPI_Finalize();
return 0;

}

13

Example with
MPI_WIN_CREATE

MPI_WIN_ALLOCATE

 info
 comm

- info argument (handle)
- communicator (handle)

 baseptr - pointer to exposed local data
 win – window object (ha1n4 dle)

 Create a remotely accessible memory region in an RMA
 window
 Only data exposed in a window can be accessed with RMA ops.

 Arguments:
 size - size of local data in bytes (nonnegative integer)
 disp_unit- local unit size for displacements, in bytes (positive

integer)

Example with
MPI_WIN_ALLOCATE

15

int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */
MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win); MPI_Finalize(); return 0;
}

MPI_WIN_CREATE_DYNAMIC

 Only data exposed in a window can be accessed with RMA ops

 Initially “empty”
 Application can dynamically attach/detach memory to this

window by calling MPI_Win_attach/detach
 Application can access data on this window only after a

memory region has been attached

 Window origin is MPI_BOTTOM
 Displacements are segment addresses relative to

MPI_BOTTOM
 Must tell others the displacement after calling attach

16

Example with MPI_WIN_CREATE_DYNAMIC

17

int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (int *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1; a[1] = 2;

/* locally declare memory as remotely accessible */
MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */
MPI_Win_detach(win, a); free(a); MPI_Win_free(&win);

MPI_Finalize(); return 0;
}

Data movement

18

 MPI provides ability to read, write
 and atomically modify data in
remotely accessible memory
regions
MPI_GET
MPI_PUT
MPI_ACCUMULATE
MPI_GET_ACCUMULATE
MPI_COMPARE_AND_SWAP
MPI_FETCH_AND_OP

Data movement: Put

 for

19

Remotely
Accessible
 Memory

Private
Memory

Data movement: Get

20

Remotely
Accessible
 Memory

Private
Memory

 Different data layouts
between target/origin OK
 Basic type elements

must match

 Op = MPI_REPLACE
 Implements f(a,b)=b

 Element-wise atomic PUT

 Reduces origin and target data into target buffer using op
 argument as combiner

 Predefined ops only, no user-defined operations

21

Remotely
Accessible
 Memory

Private
Memory

Atomic Data Aggregation: Get Accumulate

•
•
•

•
•

Remotely
Accessible
 Memory

Private
Memory

22

Atomic Data Aggregation: CAS and FOP

 All buffers share a single predefined datatype
 No count argument (it’s always 1)
 Simpler interface allows hardware optimization

 CAS: Atomic swap if target value is equal to
compare value

23

Ordering of Operations in
 MPI RMA

24

 No guaranteed ordering for Put/Get operations
 Result of concurrent Puts to the same location

undefined
 Result of Get concurrent Put/Accumulate undefined

 Can be garbage in both cases
 Result of concurrent accumulate operations to the

same location are defined according to the order in
which the occurred
 Atomic put: Accumulate with op = MPI_REPLACE
 Atomic get: Get_accumulate with op = MPI_NO_OP

 Accumulate operations from a given process are
ordered by default
 User can tell the MPI implementation that ordering is not

 required as optimization hint
 You can ask for only the needed orderings, e.g., RAW

(read-after-write), WAR, RAR, or WAW

RMA Synchronization Models

25

 RMA data access model
 When is a process allowed to read/write remotely accessible

memory?
 When is data written by process X is available for process Y to read?
 RMA synchronization models define these semantics

 Three synchronization models provided by MPI:
 Fence (active target)
 Post-start-complete-wait (generalized active target)
 Lock/Unlock (passive target)

 Data accesses occur within “epochs”
 Access epochs: contain a set of operations issued by an origin

process
 Exposure epochs: enable remote processes to access and/or update

a target’s window
 Epochs define ordering and completion semantics
 Synchronization models provide mechanisms for establishing epochs

 E.g., starting, ending, and synchronizing epochs

 Starts and ends access and
 exposure epochs on all
processes in the window

 All processes in group of “win”
do an MPI_WIN_FENCE to open
 an epoch

 Everyone can issue PUT/GET
operations to read/write data

 Everyone does an
MPI_WIN_FENCE to close the
epoch

 All operations complete at the
 second fence synchronization

Fence

Fence

26

P0 P1 P2

PSCW: Generalized Active
 Target Synchronization

 Target: Exposure epoch
 Opened with MPI_Win_post
 Closed by MPI_Win_wait

 Origin: Access epoch
 Opened by MPI_Win_start
 Closed by MPI_Win_complete

 All synchronization operations may
 block, to enforce P-S/C-W
ordering
 Processes can be both origins and

targets

Start

Complete

Post

Wait

27

Using ActiveTarget
Synchronization

28

 Active target RMA works well for many BSP-
style program
 Halo exchange
 Dense linear algebra

 How might you write the dense matrix-vector
multiply using
 MPI_Get: Instead of Allgather
 MPI_Put: Instead of send/receive

 Do you think using Get instead of Allgather is
a good choice at scale? Why or why not? How
 would use use a performance model to argue
your choice?

