Introduction to MPI I/0

William Gropp www.cs.illinois.edu/~wgropp

http://www.cs.illinois.edu/~wgropp

Checkpoints

static void save_checkpoint() ?tatic void load_checkpoint()
{
if (rank == 0) { FILE* file = fopen("gauss.txt",
FILE* file = fopen("gauss.txt", 'I);
"W"); fOr(inti - 0, | < N/ |++) {
for(inti = 0; i < N; i++) { for (intj =0;j < N; j++) {
for (intj=0;j <= N; j++) < fscanf(file, "%f", &A(i, j));
fprintf(file, "%f", A(i, j)); y b
by
) fclose(file);
fclose(file); printf("Proc %d loaded
) checkpoint\n", rank);
) b
float *A;

#define A(i,j) A[()*(N+1)+(j)]

2

Parallel I/O in MPI

e Why do I/O in MPI?
¢+ Why not just POSIX?

e Parallel performance
e Single file (instead of one file / process)

e MPI has replacement functions for POSIX
I/0
¢ Provides migration path

e Multiple styles of I/O can all be expressed
in MPI

¢ Including some that cannot be expressed
without MPI

3

Non-Parallel I/0

RNy

e Non-parallel

e Performance worse than sequential

e Legacy from before application was parallelized
e Either MPI or not

Independent Parallel I/0

e Each process writes to a separate file

Y

ENEE I
e Pro: parallelism
e Con: lots of small files to manage

o

4 Y

O
—

e Legacy from before MPI

e MPI or not

5

Y

A

Cooperative Parallel I/0

e Parallelism
e Can only be expressed in MPI
e Natural once you get used to it

6

Why MPI is a Good
Setting for Parallel I/O

e Writing is like sending and reading is
like receiving.

e Any parallel I/O system will need:
¢ collective operations

¢ user-defined datatypes to describe both
memory and file layout

¢ communicators to separate application-level
message passing from I/O-related message
passing

¢ non-blocking operations
e I.e., lots of MPI-like machinery

7

What does Parallel I/O Mean?

e At the program level:

¢ Concurrent reads or writes from
multiple processes to a common file

e At the system level:

¢ A parallel file system and hardware
that support such concurrent access

The Four Levels of Access

>

(¢b]
g [o
T |
/ —
= 1 < Level 1
W |

| <— Level 2

<— Level 3

>
0 1 2 3 Processes

Independent I/0
with MPI-IO

The Basics: An Example

e Just like POSIX I/0O, you need to
¢ Open the file

+ Read or Write data to the file
¢ Close the file
e In MPI, these steps are almost the
Same.
¢ Open the file: MPI_File_open
¢ Write to the file: MPI_File_ write
¢ Close the file: MPI_File_close

11

A Complete Example

#include <stdio.h> #include "mpi.h”

int main(int argc, char *argv[])

{
MPI_File fh;
int buf[1000], rank; MPI_Init(0,0);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_File_open(MPI_COMM_WORLD, "test.out",
MPI_MODE_CREATE|MPI_MODE_WRONLY,

MPI_INFO_NULL, &fh);
if (rank == 0)
MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);
MPI_File_close(&fh); MPI_Finalize();

return O;

12

Comments on Example

File Open is collective over the communicator

+ Will be used to support collective I/0O, which we will
see is important for performance

¢+ Modes similar to Unix open
¢+ MPI_Info provides additional hints for performance

File Write is independent (hence the test on
rank)

¢+ Many important variations covered in later slides

File close is collective; similar in style to
MPI_ _Comm_free

13

Passing Hints

* MPI defines MPI Info

* Provides an extensible list
of key=valuepairs

* Used to package variable, optional
types of arguments that may not
be standard

¢+ Used in IO, Dynamic, and RMA, as
well as with communicators

14

Example of Hints Display

PE 0: MPICH/MPIIO environment settings:
MPICH MPIIO HINTS DISPLAY =1

PE O:
PE O:
PE O:

MPICH_MPIIO_HINTS

MPIC‘:H_MPIIO_ABDRT_O N_RW_ERROR =

disable
PE O:

PE O:

MPICH_MPIIO_CB_ALIGN =2

MPIIO hints for ioperf.out.tfaRGQ:

cb buffer_ size = 16777216

romio_cb read = automatic
= automatic

romio_cb write =1

cb _nodes =2

cb_align = false

romio no_indep rw =

romio_cb_pfr disable

= aar

romio cb fr types

= NULL

15

romio_cb ds threshold =20
romio cb alltoall = automatic
ind_rd_buffer size = 4194304
= 524288
ind_wr_buffer_size — disable
romio_ds read = disable
romio_ds write =1
striping_factor — 1048576

striping_unit

aggregator_placement_stride = -1
abort_on_rw_error = disable
cb_config_list = ¥ ¥

Examples of Hints (used in ROMIO)

* striping unit B

* striping_factor > MPI predefined hints
. cb_buffer_size

° cb_nodes R

ind rd buffer size New Algorithm

* ind wr buffer size Parameters

* start i1odevice
* pfs _svr buf

* direct read . Platform-specific hints

* direct write
16

Passing Hints

MPI Info info;
MPI_Infq_create(&info);

/* no. of I/O0 devices to be used for file striping */
MPI Info set(info, "striping factor", "4");

/* the striping unit in bytes */
MPI Info set(info, "striping unit", "65536");

MPI File open(MPI COMM WORLD, "/pfs/datafile",
MPI_NDDE_CREATE | MPI_EODE_BDWR, info, &fh);

MPI_Infq_free(&info);

17

Writing to a File

Use MPI File write oOr
MPI File write at

Use MPI_MODE WRONLY Or MPI_MODE RDWR
as the flags to MPT _File open

If the file doesn’t exist previously, the flag
MPI_MODE CREATE must also be passed to

MPI File open

We can pass multiple flags by using
bitwise-or ‘|* in C, or addition '+” in
Fortran

18

Ways to Access a Shared File

MPI_Fi 1e_seek

MPI_File_read - like Unix I/0

MPI_Fi le_wri te J

MPI_F:!.le_re?d_at combine seek and I/0O
MPI File write at for thread safety

MP I_Fi le_read_shared

] . } use shared file pointer
MPI File write shared

13

Using Explicit Offsets

#include “mpi.h”
MPI Status status;
MPI File fh;

MPI Offset offset;

MPI File open(MPI COMM WORLD, “/pfs/datafile”,
MPI MODE RDONLY, MPI INFO NULL, &fh)

nints FILESIZE / (nprocs*INTSIZE)

offset = rank * nints * INTSIZE;

MPI File read at(fh, offset, buf, nints, MPI INT,
&status) ;

MPI Get count(&status, MPI INT, &count);
printf (“process %d read %d

ints\n”, rank, count);
MPI File close(&fh);

13

Why Use Independent I/O?

e Sometimes the synchronization of
collective calls is not natural

e Sometimes the overhead of
collective calls outweighs their
benefits

¢« Example: very small I/O during
header reads

21

Noncontiguous I/O in File

e Each process describes the part of the
file for which it is responsible

¢ This is the “file view”

¢ Described in MPI with an offset (useful for
headers) and an MPI_Datatype

e Only the part of the file described by the
file view is visible to the process; reads
and writes access these locations

e This provides an efficient way to perform
noncontiguous accesses

22

Noncontiguous Accesses

Common in parallel applications
Example: distributed arrays stored in files

A big advantage of MPI I/O over Unix I/O is
the ability to specify noncontiguous accesses
in memory and file within a single function call
by using derived datatypes

¢ POSIX only supports non-contiguous in file, and only
with IOVs

Allows implementation to optimize the access

Collective I/O combined with noncontiguous
accesses yields the highest performance

23

File Views

e Specified by a triplet (displacement,
etype, and filetype) passed to
MPI File set view
e displacement = number of bytes to be
skipped from the start of the file
¢ e.g., to skip a file header

e etype = basic unit of data access (can be
any basic or derived datatype)

o filetype = specifies which portion of the
file is visible to the process

22

A Simple Noncontiguous
File View Example

B etype = MPLINT

- filetype = two MPI_INTs followed by
a gap of four MPI_INTs

head of file FILE

L
Ty

L N
Ty Ll

displacement, filetype filetype and so on...

L h %
-~ L

22

Noncontiguous FileView Code

MPI Aint 1lb, extent;
MPI Datatype etype, filetype, contig;
MPI Offset disp;

MPI Type contiguous (2, MPI INT, é&contigq);

1b = 0;

extent = 6 * sizeof(int) ;

MPI Type create resized(contig, 1lb, extent, &filetype);
MPI Type commit(&filetype) ;

disp = 5 * sizeof (int)

etype = MPI INT;

MPI File open (MPI COMM WORLD, "/pfs/datafile",
MPI_MODE CREATE | MPI_MODE RDWR, MPI_ INFO NULL, &fh);
MPI File set view(fh, disp, etype, filetype, "native",
MPI_ INFO NULL) ;
MPI_File;write(fh, buf, 1000, MPI INT, MPI_STATUS_IGNORE);

22

Collective I/O and MPI

A critical optimization in parallel I/O

All processes (in the communicator) must call the
collective I/O function

Allows communication of “big picture” to file system
+ Framework for I/O optimizations at the MPI-IO layer

Basic idea: build large blocks, so that reads/writes in I/O
system will be large

¢+ Requests from different processes may be merged together

+ Particularly effective when the accesses of different
processes are noncontiguous and interleaved

Small individual requests

Large collective access

— =

-
>

N
— >
—
>

_/

22

Collective I/O Functions

- MPTI File write at all, etc.
¢ all indicates that all processes in the group

specified by the communicator passed to
MPI_File open Will call this function

¢ _at indicates that the position in the file is

specified as part of the call; this provides
thread-safety and clearer code than using a
separate “seek” call

« Each process specifies only its own
access information — the argument list
is the same as for the non-collective

functions

22

The Other Collective I/0 Calls

MPI File seek
MPI File read all - like Unix I/0
MPI File write all)
MPI File read at all
MPI File write at all }
MPI File read ordered
MPI File write ordered

combine seek and I/O
for thread safety

} use shared file pointer

22

Using the Right
MPI-IO Function

Any application as a particular “"I/O access
pattern” based on its I/O needs

The same access pattern can be presented to
the I/O system in different ways depending on
what I/O functions are used and how

We classify the different ways of expressing 1/
O access patterns in MPI-IO into four levels:
level O - level 3

We demonstrate how the user’s choice of level
affects performance

22

Example: Distributed Array

Large array PO | P1 | P2 [P3

distributed Each square represents
among 16 P4 | ps | pg | py | @subarray in the memory
processes of a single process

P8 | P9 | P10 | P11

P12 | P13 | P14 | P15

Access Pattern in the file
| po| PL | P2| P3| PO| PL | P2|

| P4 P5| P6| P7| P4| P5]| P6 |

| P8 | P9 | P10| P11| P8 | P9 | P10 |

P12 P13 P14 P15 P12 P13 P14

22

Level-0 Access

e Each process makes one independent read
request for each row in the local array (as in
Unix)

MPI File open(..., file, ..., &fh);
for (i=0; i<n local rows; i++) {

MPI File seek(fh, ...);

MPI File read(fh, &(A[i][0]), ...):

}
MPI File close(&fh);

22

Level-1 Access

e Similar to level 0, but each process uses collective
I/O functions

MPI File open(MPI_COMM WORLD, file, ...,
&fh) ;

for (i=0; i<n local rows; i++) |
MPI File seek(fh, ...);
MPI File read all(fh, &(A[i][O0]), ...)~;

}
MPI File close(&fh) ;

22

Level-2 Access

e Each process creates a derived datatype to
describe the noncontiguous access pattern, defines
a file view, and calls independent I/O functions

MPI Type create subarray(...,
&subarray, ...);

MPI Type commit (&subarray) ;

MPI File open(..., file, ..., &fh);

MPI File set view(fh, ..., subarray, ...);
MPI File read(fh, A, ...);

MPI File close(&fh);

22

Level-3 Access

e Similar to level 2, except that each process uses
collective I/O functions

MPI Type create subarray(...,
&subarray, ...);

MPI Type commit (&subarray) ;
MPI File open(MPI_COMM WORLD, file,...

&fh) ;
MPI File set view(fh ..., .. .)
, subarray, ;
MPI File read all(fh A, ...);

4

MPI File close(&fh); ,,

The Four Levels of Access

>

(¢b]
g [o
T |
/ —
= 1 < Level 1
W |

| <— Level 2

<— Level 3

>
0 1 2 3 Processes

36

Collective 1/0

Can Provide Far Higher Performance

« Write performance for

a 3D array output in
canonical order on 2
supercomputers,
using 256 processes
(1 process / core)

Level O (independent
I/O from each
process for each
contiguous block of
memory) too slow on

BG/Q

Total BW is still low
because relatively
few nodes in use (16
for Blue Waters =
~180MB/sec/node)

3500

3000

2500

2000

1500 r

Bandwidth (MB/s)

1000 r

500

" Level0

1

Level2 oo

[SPRIPAILIVAN

Level 3 oy

..........

Blue Gene/Q

37

Blue Waters

Summary

e Key issues that I/O must address

+ High latency of devices
e Nonblocking I/O; cooperative 1I/0
¢ I/0O inefficient if transfers are not both large
and aligned with device blocks
e Collective I/0O; datatypes and file views

+ Data consistency to other users

e POSIX is far too strong (primary reason parallel
file systems have reliability problems)

e "Big Data” file systems are weak (eventual
consistency; tolerate differences)

e MPI is precise and provides high performance;
consistency points guided by users

38

