
 Introduction to MPI I/O

William Gropp www.cs.illinois.edu/~wgropp

http://www.cs.illinois.edu/~wgropp

Сheckpoints

2

static void save_checkpoint()
{
 if (rank == 0) {
 FILE* file = fopen("gauss.txt",
"w");
 for(int i = 0; i < N; i++) {
 for (int j = 0; j <= N; j++) {
 fprintf(file, "%f", A(i, j));
 }
 }
 fclose(file);
 }
}

static void load_checkpoint()
{
 FILE* file = fopen("gauss.txt",
"r");
 for(int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 fscanf(file, "%f", &A(i, j));
 }
 }
 fclose(file);
 printf("Proc %d loaded
 checkpoint\n", rank);
}

float *A;
#define A(i,j) A[(i)*(N+1)+(j)]

Parallel I/O in MPI

3

 Why do I/O in MPI?

 Why not just POSIX?

 Parallel performance

 Single file (instead of one file / process)

 MPI has replacement functions for POSIX

I/O

 Provides migration path

 Multiple styles of I/O can all be expressed

in MPI

 Including some that cannot be expressed

without MPI

Non-Parallel I/O

 Non-parallel

 Performance worse than sequential

 Legacy from before application was parallelized

 Either MPI or not

4

Independent Parallel I/O

 Each process writes to a separate file

 Pro: parallelism

 Con: lots of small files to manage

 Legacy from before MPI

 MPI or not
5

Cooperative Parallel I/O

 Parallelism

 Can only be expressed in MPI

 Natural once you get used to it
6

Why MPI is a Good
Setting for Parallel I/O

7

 Writing is like sending and reading is
like receiving.

 Any parallel I/O system will need:

 collective operations

 user-defined datatypes to describe both
memory and file layout

 communicators to separate application-level
message passing from I/O-related message
passing

 non-blocking operations

 I.e., lots of MPI-like machinery

What does Parallel I/O Mean?

8

 At the program level:

Concurrent reads or writes from
multiple processes to a common file

 At the system level:

A parallel file system and hardware
that support such concurrent access

The Four Levels of Access

30

F
il

e
S

p
ac

e

Processes 3 2 1 0

Level 0

Level 1

Level 2

Level 3

9

Independent I/O
with MPI-IO

10

The Basics: An Example

11

 Just like POSIX I/O, you need to

Open the file

Read or Write data to the file

Close the file

 In MPI, these steps are almost the
same:

Open the file: MPI_File_open

Write to the file: MPI_File_write

Close the file: MPI_File_close

A Complete Example

12

#include <stdio.h> #include "mpi.h”

int main(int argc, char *argv[])

{

MPI_File fh;

int buf[1000], rank; MPI_Init(0,0);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_File_open(MPI_COMM_WORLD, "test.out",

MPI_MODE_CREATE|MPI_MODE_WRONLY,

MPI_INFO_NULL, &fh);

if (rank == 0)

MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

MPI_File_close(&fh); MPI_Finalize();

return 0;

}

Comments on Example

13

 File Open is collective over the communicator

 Will be used to support collective I/O, which we will
see is important for performance

 Modes similar to Unix open

 MPI_Info provides additional hints for performance

 File Write is independent (hence the test on
rank)

 Many important variations covered in later slides

 File close is collective; similar in style to
MPI_Comm_free

14

Passing Hints

15

Example of Hints Display

16

Examples of Hints (used in ROMIO)

17

Passing Hints

Writing to a File

18

 Use MPI_File_write or
MPI_File_write_at

 Use MPI_MODE_WRONLY or MPI_MODE_RDWR

as the flags to MPI_File_open

 If the file doesn’t exist previously, the flag
MPI_MODE_CREATE must also be passed to
MPI_File_open

 We can pass multiple flags by using
bitwise-or ‘|’ in C, or addition ‘+” in
Fortran

Ways to Access a Shared File

• MPI_File_seek

• MPI_File_read

• MPI_File_write

• MPI_File_read_at

• MPI_File_write_at

• MPI_File_read_shared

• MPI_File_write_shared

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O

19

13

Using Explicit Offsets

20

13

#include “mpi.h”

MPI_Status status;

MPI_File fh;

MPI_Offset offset;

MPI_File_open(MPI_COMM_WORLD, “/pfs/datafile”,

MPI_MODE_RDONLY, MPI_INFO_NULL, &fh)

nints = FILESIZE / (nprocs*INTSIZE);

 offset = rank * nints * INTSIZE;

MPI_File_read_at(fh, offset, buf, nints, MPI_INT,

&status);

MPI_Get_count(&status, MPI_INT, &count);

printf(“process %d read %d

ints\n”, rank, count);

MPI_File_close(&fh);

Why Use Independent I/O?

21

 Sometimes the synchronization of
collective calls is not natural

 Sometimes the overhead of
collective calls outweighs their
benefits

Example: very small I/O during

header reads

Noncontiguous I/O in File

22

 Each process describes the part of the
file for which it is responsible

 This is the “file view”

 Described in MPI with an offset (useful for
headers) and an MPI_Datatype

 Only the part of the file described by the
file view is visible to the process; reads
and writes access these locations

 This provides an efficient way to perform

noncontiguous accesses

16

Noncontiguous Accesses

23

 Common in parallel applications

 Example: distributed arrays stored in files

 A big advantage of MPI I/O over Unix I/O is
the ability to specify noncontiguous accesses
in memory and file within a single function call
by using derived datatypes

 POSIX only supports non-contiguous in file, and only
with IOVs

 Allows implementation to optimize the access

 Collective I/O combined with noncontiguous
accesses yields the highest performance

File Views

24

22

 Specified by a triplet (displacement,
etype, and filetype) passed to
MPI_File_set_view

• displacement = number of bytes to be

skipped from the start of the file

 e.g., to skip a file header

• etype = basic unit of data access (can be
any basic or derived datatype)

• filetype = specifies which portion of the
file is visible to the process

A Simple Noncontiguous
File View Example

etype = MPI_INT

filetype = two MPI_INTs followed by

a gap of four MPI_INTs

displacement filetype filetype and so on...

FILE
head of file

25

22

Noncontiguous File View Code

26

22

MPI_Aint lb, extent;

MPI_Datatype etype, filetype, contig;

 MPI_Offset disp;

MPI_Type_contiguous(2, MPI_INT, &contig);

lb = 0;

extent = 6 * sizeof(int);

MPI_Type_create_resized(contig, lb, extent, &filetype);

MPI_Type_commit(&filetype);

disp = 5 * sizeof(int);

etype = MPI_INT;

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",

MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, filetype, "native",

MPI_INFO_NULL);

MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

 A critical optimization in parallel I/O
 All processes (in the communicator) must call the

collective I/O function
 Allows communication of “big picture” to file system

 Framework for I/O optimizations at the MPI-IO layer

 Basic idea: build large blocks, so that reads/writes in I/O
system will be large
 Requests from different processes may be merged together
 Particularly effective when the accesses of different

processes are noncontiguous and interleaved
Small individual requests

Large collective access

Collective I/O and MPI

27

22

Collective I/O Functions

28

22

• MPI_File_write_at_all, etc.

 _all indicates that all processes in the group

specified by the communicator passed to
MPI_File_open will call this function

 _at indicates that the position in the file is

specified as part of the call; this provides
thread-safety and clearer code than using a
separate “seek” call

• Each process specifies only its own
access information — the argument list
is the same as for the non-collective
functions

The Other Collective I/O Calls

• MPI_File_seek

• MPI_File_read_all

• MPI_File_write_all

• MPI_File_read_at_all

• MPI_File_write_at_all

• MPI_File_read_ordered

• MPI_File_write_ordered

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O

29

22

Using the Right
MPI-IO Function

30

22

 Any application as a particular “I/O access
pattern” based on its I/O needs

 The same access pattern can be presented to
the I/O system in different ways depending on
what I/O functions are used and how

 We classify the different ways of expressing I/
O access patterns in MPI-IO into four levels:
level 0 – level 3

 We demonstrate how the user’s choice of level
affects performance

Example: Distributed Array
 Access

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P0 P1 P2 P3 P0 P1 P2

P4 P5 P6 P7 P4 P5 P6

P8 P9 P10 P11 P8 P9 P10

P12 P13 P14 P15 P12 P13 P14

31

22

Large array
distributed
among 16
processes

Access Pattern in the file

Each square represents
a subarray in the memory

of a single process

Level-0 Access

32

22

 Each process makes one independent read
request for each row in the local array (as in
Unix)

MPI_File_open(..., file, ..., &fh);

for (i=0; i<n_local_rows; i++) {

MPI_File_seek(fh, ...);

MPI_File_read(fh, &(A[i][0]), ...);

}

MPI_File_close(&fh);

Level-1 Access

33

22

 Similar to level 0, but each process uses collective
I/O functions

MPI_File_open(MPI_COMM_WORLD, file, ...,

&fh);

for (i=0; i<n_local_rows; i++) {

MPI_File_seek(fh, ...);

MPI_File_read_all(fh, &(A[i][0]), ...);

 }

 MPI_File_close(&fh);

Level-2 Access

34

22

 Each process creates a derived datatype to
describe the noncontiguous access pattern, defines
a file view, and calls independent I/O functions

MPI_Type_create_subarray(...,

&subarray, ...);

MPI_Type_commit(&subarray);

MPI_File_open(..., file, ..., &fh);

MPI_File_set_view(fh, ..., subarray, ...);

MPI_File_read(fh, A, ...);

MPI_File_close(&fh);

Level-3 Access

35

22

 Similar to level 2, except that each process uses
collective I/O functions

MPI_Type_create_subarray(...,
&subarray,

MPI_Type_commit(&subarray);

...);

MPI_File_open(MPI_COMM_WORLD, file,...,
&fh);

MPI_File_set_view(fh

,
...,

subarray,
...)

;

MPI_File_read_all(fh

,

MPI_File_close(&fh);

A, ...);

The Four Levels of Access

30

F
il

e
S

p
ac

e

Processes 3 2 1 0

Level 0

Level 1

Level 2

Level 3

36

Collective I/O
Can Provide Far Higher Performance

• Write performance for
a 3D array output in
canonical order on 2
supercomputers,
using 256 processes
(1 process / core)

• Level 0 (independent
I/O from each
process for each
contiguous block of
memory) too slow on
BG/Q

• Total BW is still low
because relatively
few nodes in use (16
for Blue Waters =

~180MB/sec/node)

0

500

1000

1500

2000

2500

3000

3500

Blue Gene/Q Blue Waters

B
a

n
d

w
id

th
 (
M

B
/s

)

Level 0
Level 2
Level 3

37

Summary

38

 Key issues that I/O must address

 High latency of devices

 Nonblocking I/O; cooperative I/O

 I/O inefficient if transfers are not both large
and aligned with device blocks

 Collective I/O; datatypes and file views

 Data consistency to other users

 POSIX is far too strong (primary reason parallel
file systems have reliability problems)

 “Big Data” file systems are weak (eventual
consistency; tolerate differences)

 MPI is precise and provides high performance;
consistency points guided by users

